Course Type	Course Code	Name of Course		Т	P	Credit
DE	NECD513	Advanced Optical Communication Technologies for 6G and Beyond	3	0	0	3

Course Objective

The objective of the course is to provide a thorough grounding in advanced optical communications to address future needs for 6G and beyond.

Learning Outcomes

At the end of the course, the student must be able to

- Understanding basic principles of light propagation and modal analyses of optical fiber.
- Understand the concept of Advanced Optical Modulation Formats.
- · Understand coherent communications system.
- · Concept of Probability shaping techniques.
- Analyse Photonics-based THz communications system for 6G technology.

Module No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Overview of optical communication, Ray theory, mode theory of optical fibres, and attenuation and dispersion.	06	Brief understanding of the mode theory and propagation characteristics of optical fibers		
2	Photodetectors- PIN and APD Detectors, Sources of Noise- shot noise, thermal noise, Homodyne and Heterodyne detectors, SNR in homodyne and heterodyne detection.		Basic Understanding and characteristic parameters of various detectors		
3	Advanced Optical Modulation Formats: BPSK and DPSK optical systems, High-level PSK and QAM modulation, Analog optical systems and radio over fibre. Multiplexing techniques: Time-division, wavelength-division, and polarization-division multiplexing.		Fundamental concept of advanced optical modulation formats and various Multiplexing techniques		
4	Coherent Optical Communication Systems: Introduction of coherent communication, Receiver SNR calculation of coherent detection. Balanced Coherent Detection and Polarization Diversity, Phase Diversity and I/Q Detection. Noise formulations. Advanced DSP in coherent Communications.		Understand the fundamental concepts of coherent detection and advanced digital signal processing techniques.		
5	Information theory fundamentals: Shannon capacity, entropy, and mutual information. Introduction to probability shaping and techniques: Probabilistic Constellation Shaping (PCS), Probabilistic Amplitude Shaping (PAS), Probabilistic Geometric Shaping (PGS)		Concept of Probability shaping techniques for optimization of the probability distribution of transmitted symbols		
6	Optical systems and network: optical Power budget analysis, optical fibre link design, Dispersion effect. Optical networks: network concept, optical switching, Data Centers		Basic understanding of the design of optical systems, future optical networks and switches.		
7	Photonics-based THz communications system for 6G: Introduction to sub-Terahertz/THz band, Photonics-based THz transmitter and receiver.	04	Concept of Sub-Terahertz Optical Communication and THz Frequency Bands		
	Total	42			

Textbook:

- 2. Optical Fiber Communication-principles and practice, J. M. Senior (Prentice Hall of India),2014
- 3. Introduction to Fiber-Optic Communications, Rongqing Hui (Academic Press), 2020

Reference Books:

3. Optical Fiber Communications, Gerd Keiser, TMH, 4th Edition, 2011

- 4. Digital Coherent Optical Systems Architecture and Algorithms, Darli Augusto de Arruda Mello , Fabio Aparecido Barbosa, 2021
- 5. Coherent Optical Wireless Communication Principle and Application, Xizheng Ke , Jiali Wu , 2022
- 6. Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application, Jianjun Yu, Nan Chi, 2020
- 7. Thz Communications (Springer Optical Sciences) by Thomas Kürner & Daniel M Mittleman & Tadao Nagatsuma Springer Nature Switzerland AG; 1st ed. 2022 edition